Spring Security JWT


Spring Security Architecture

Spring Security 架构,入门介绍:网址

Authentication and Access Control

应用程序安全性归结为或多或少的两个独立问题:身份验证(您是谁?)和授权(您可以做什么?)。有时人们会说“访问控制”而不是“授权”,这可能会造成混淆,但是以这种方式思考可能会有所帮助,因为“授权”在其他地方超载。 Spring Security的体系结构旨在将身份验证与授权分开,并具有策略和扩展点。

Authentication

身份验证的主要策略接口是AuthenticationManager,它只有一种方法:


 OAuth 2.0 Resource Server

Spring Security supports protecting endpoints using two forms of OAuth 2.0 Bearer Tokens:

  • JWT
  • Opaque Tokens

This is handy in circumstances where an application has delegated its authority management to an authorization server (for example, Okta or Ping Identity). This authorization server can be consulted by resource servers to authorize requests.

Working samples for both JWTs and Opaque Tokens are available in the Spring Security repository.

1 Dependencies

Most Resource Server support is collected into spring-security-oauth2-resource-server. However, the support for decoding and verifying JWTs is in spring-security-oauth2-jose, meaning that both are necessary in order to have a working resource server that supports JWT-encoded Bearer Tokens.

2 Minimal Configuration for JWTs

When using Spring Boot, configuring an application as a resource server consists of two basic steps. First, include the needed dependencies and second, indicate the location of the authorization server.

Specifying the Authorization Server

In a Spring Boot application, to specify which authorization server to use, simply do:

1
2
3
4
5
6
spring:
  security:
    oauth2:
      resourceserver:
        jwt:
          issuer-uri: https://idp.example.com/issuer

Where https://idp.example.com/issuer is the value contained in the iss claim for JWT tokens that the authorization server will issue. Resource Server will use this property to further self-configure, discover the authorization server’s public keys, and subsequently validate incoming JWTs.

To use the issuer-uri property, it must also be true that one of https://idp.example.com/issuer/.well-known/openid-configuration, https://idp.example.com/.well-known/openid-configuration/issuer, or https://idp.example.com/.well-known/oauth-authorization-server/issuer is a supported endpoint for the authorization server. This endpoint is referred to as a Provider Configuration endpoint or a Authorization Server Metadata endpoint.

And that’s it!

Startup Expectations

When this property and these dependencies are used, Resource Server will automatically configure itself to validate JWT-encoded Bearer Tokens. It achieves this through a deterministic startup process:

  1. Hit the Provider Configuration or Authorization Server Metadata endpoint, processing the response for the jwks_url property
  2. Configure the validation strategy to query jwks_url for valid public keys
  3. Configure the validation strategy to validate each JWTs iss claim against https://idp.example.com.

A consequence of this process is that the authorization server must be up and receiving requests in order for Resource Server to successfully start up.

If the authorization server is down when Resource Server queries it (given appropriate timeouts), then startup will fail.

Runtime Expectations

Once the application is started up, Resource Server will attempt to process any request containing an Authorization: Bearer header:

GET / HTTP/1.1
Authorization: Bearer some-token-value # Resource Server will process this

So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification. Given a well-formed JWT, Resource Server will:

  1. Validate its signature against a public key obtained from the jwks_url endpoint during startup and matched against the JWTs header
  2. Validate the JWTs exp and nbf timestamps and the JWTs iss claim, and
  3. Map each scope to an authority with the prefix SCOPE_.

As the authorization server makes available new keys, Spring Security will automatically rotate the keys used to validate the JWT tokens.

The resulting Authentication#getPrincipal, by default, is a Spring Security Jwt object, and Authentication#getName maps to the JWT’s sub property, if one is present. From here, consider jumping to:

3 Specifying the Authorization Server JWK Set Uri Directly

If the authorization server doesn’t support any configuration endpoints, or if Resource Server must be able to start up independently from the authorization server, then the jwk-set-uri can be supplied as well:

1
2
3
4
5
6
7
spring:
 security:
 oauth2:
 resourceserver:
 jwt:
 issuer-uri: https://idp.example.com
 jwk-set-uri: https://idp.example.com/.well-known/jwks.json

The JWK Set uri is not standardized, but can typically be found in the authorization server’s documentation

Consequently, Resource Server will not ping the authorization server at startup. We still specify the issuer-uri so that Resource Server still validates the iss claim on incoming JWTs.

This property can also be supplied directly on the DSL.

4 Overriding or Replacing Boot Auto Configuration

There are two @Bean s that Spring Boot generates on Resource Server’s behalf. The first is a WebSecurityConfigurerAdapter that configures the app as a resource server. When including spring-security-oauth2-jose, this WebSecurityConfigurerAdapter looks like:

1
2
3
4
5
6
7
protected void configure(HttpSecurity http) {
    http
        .authorizeRequests()
            .anyRequest().authenticated()
            .and()
        .oauth2ResourceServer(OAuth2ResourceServerConfigurer::jwt)
}

If the application doesn’t expose a WebSecurityConfigurerAdapter bean, then Spring Boot will expose the above default one. Replacing this is as simple as exposing the bean within the application:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
@EnableWebSecurity
public class MyCustomSecurityConfiguration extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests()
                .mvcMatchers("/messages/**").hasAuthority("SCOPE_message:read")
                .anyRequest().authenticated()
                .and()
            .oauth2ResourceServer()
                .jwt()
                    .jwtAuthenticationConverter(myConverter());
    }
}

The above requires the scope of message:read for any URL that starts with /messages/. Methods on the oauth2ResourceServer DSL will also override or replace auto configuration. For example, the second @Bean Spring Boot creates is a JwtDecoder, which decodes String tokens into validated instances of Jwt:

1
2
3
4
@Bean
public JwtDecoder jwtDecoder() {
    return JwtDecoders.fromIssuerLocation(issuerUri);
}

Calling JwtDecoders#fromIssuerLocation is what invokes the Provider Configuration or Authorization Server Metadata endpoint in order to derive the JWK Set Uri.

If the application doesn’t expose a JwtDecoder bean, then Spring Boot will expose the above default one. And its configuration can be overridden using jwkSetUri() or replaced using decoder().

Using jwkSetUri()

An authorization server’s JWK Set Uri can be configured as a configuration property or it can be supplied in the DSL:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@EnableWebSecurity
public class DirectlyConfiguredJwkSetUri extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests()
                .anyRequest().authenticated()
                .and()
            .oauth2ResourceServer()
                .jwt()
                    .jwkSetUri("https://idp.example.com/.well-known/jwks.json");
    }
}

Using jwkSetUri() takes precedence over any configuration property.

Using decoder()

More powerful than jwkSetUri() is decoder(), which will completely replace any Boot auto configuration of JwtDecoder:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@EnableWebSecurity
public class DirectlyConfiguredJwtDecoder extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests()
                .anyRequest().authenticated()
                .and()
            .oauth2ResourceServer()
                .jwt()
                    .decoder(myCustomDecoder());
    }
}

This is handy when deeper configuration, like validation, mapping, or request timeouts, is necessary.

Exposing a JwtDecoder @Bean

Or, exposing a JwtDecoder @Bean has the same effect as decoder():

1
2
3
4
@Bean
public JwtDecoder jwtDecoder() {
    return NimbusJwtDecoder.withJwkSetUri(jwkSetUri).build();
}

5 Configuring Trusted Algorithms

By default, NimbusJwtDecoder, and hence Resource Server, will only trust and verify tokens using RS256. You can customize this via Spring Boot, the NimbusJwtDecoder builder, or from the JWK Set response.

Via Spring Boot

The simplest way to set the algorithm is as a property:

1
2
3
4
5
6
7
spring:
  security:
    oauth2:
      resourceserver:
        jwt:
          jws-algorithm: RS512
          jwk-set-uri: https://idp.example.org/.well-known/jwks.json

Using a Builder

For greater power, though, we can use a builder that ships with NimbusJwtDecoder:

1
2
3
4
5
@Bean
JwtDecoder jwtDecoder() {
    return NimbusJwtDecoder.fromJwkSetUri(this.jwkSetUri)
            .jwsAlgorithm(RS512).build();
}

Calling jwsAlgorithm more than once will configure NimbusJwtDecoder to trust more than one algorithm, like so:

1
2
3
4
5
@Bean
JwtDecoder jwtDecoder() {
    return NimbusJwtDecoder.fromJwkSetUri(this.jwkSetUri)
            .jwsAlgorithm(RS512).jwsAlgorithm(EC512).build();
}

Or, you can call jwsAlgorithms:

1
2
3
4
5
6
7
8
@Bean
JwtDecoder jwtDecoder() {
    return NimbusJwtDecoder.fromJwkSetUri(this.jwkSetUri)
            .jwsAlgorithms(algorithms -> {
                    algorithms.add(RS512);
                    algorithms.add(EC512);
            }).build();
}

From JWK Set response

Since Spring Security’s JWT support is based off of Nimbus, you can use all it’s great features as well. For example, Nimbus has a JWSKeySelector implementation that will select the set of algorithms based on the JWK Set URI response. You can use it to generate a NimbusJwtDecoder like so:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@Bean
public JwtDecoder jwtDecoder() {
    // makes a request to the JWK Set endpoint
    JWSKeySelector <securitycontext>jwsKeySelector =
            JWSAlgorithmFamilyJWSKeySelector.fromJWKSetURL(this.jwkSetUrl);

    DefaultJWTProcessor <securitycontext>jwtProcessor =
            new DefaultJWTProcessor<>();
    jwtProcessor.setJWSKeySelector(jwsKeySelector);

    return new NimbusJwtDecoder(jwtProcessor);
}</securitycontext></securitycontext>

6 Trusting a Single Asymmetric Key

Simpler than backing a Resource Server with a JWK Set endpoint is to hard-code an RSA public key. The public key can be provided via Spring Boot or by Using a Builder.

Via Spring Boot

Specifying a key via Spring Boot is quite simple. The key’s location can be specified like so:

spring:
 security:
 oauth2:
 resourceserver:
 jwt:
 public-key-location: classpath:my-key.pub

Or, to allow for a more sophisticated lookup, you can post-process the RsaKeyConversionServicePostProcessor:

1
2
3
4
5
6
@Bean
BeanFactoryPostProcessor conversionServiceCustomizer() {
    return beanFactory ->
        beanFactory.getBean(RsaKeyConversionServicePostProcessor.class)
                .setResourceLoader(new CustomResourceLoader());
}

Specify your key’s location:

key.location: hfds://my-key.pub

And then autowire the value:

1
2
@Value("${key.location}")
RSAPublicKey key;

Using a Builder

To wire an RSAPublicKey directly, you can simply use the appropriate NimbusJwtDecoder builder, like so:

1
2
3
4
@Bean
public JwtDecoder jwtDecoder() {
    return NimbusJwtDecoder.withPublicKey(this.key).build();
}

7 Trusting a Single Symmetric Key

Using a single symmetric key is also simple. You can simply load in your SecretKey and use the appropriate NimbusJwtDecoder builder, like so:

1
2
3
4
@Bean
public JwtDecoder jwtDecoder() {
    return NimbusJwtDecoder.withSecretKey(this.key).build();
}

8 Configuring Authorization

A JWT that is issued from an OAuth 2.0 Authorization Server will typically either have a scope or scp attribute, indicating the scopes (or authorities) it’s been granted, for example: { …​, "scope" : "messages contacts"} When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_". This means that to protect an endpoint or method with a scope derived from a JWT, the corresponding expressions should include this prefix:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@EnableWebSecurity
public class DirectlyConfiguredJwkSetUri extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests(authorizeRequests -> authorizeRequests
                .mvcMatchers("/contacts/**").hasAuthority("SCOPE_contacts")
                .mvcMatchers("/messages/**").hasAuthority("SCOPE_messages")
                .anyRequest().authenticated()
            )
            .oauth2ResourceServer(OAuth2ResourceServerConfigurer::jwt);
    }
}

Or similarly with method security:

1
2
@PreAuthorize("hasAuthority('SCOPE_messages')")
public List <message>getMessages(...) {}</message>

Extracting Authorities Manually

However, there are a number of circumstances where this default is insufficient. For example, some authorization servers don’t use the scope attribute, but instead have their own custom attribute. Or, at other times, the resource server may need to adapt the attribute or a composition of attributes into internalized authorities. To this end, the DSL exposes jwtAuthenticationConverter():

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
@EnableWebSecurity
public class DirectlyConfiguredJwkSetUri extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests()
                .anyRequest().authenticated()
                .and()
            .oauth2ResourceServer()
                .jwt()
                    .jwtAuthenticationConverter(grantedAuthoritiesExtractor());
    }
}

Converter<Jwt, AbstractAuthenticationToken> grantedAuthoritiesExtractor() {
    JwtAuthenticationConverter jwtAuthenticationConverter =
            new JwtAuthenticationConverter();
    jwtAuthenticationConverter.setJwtGrantedAuthoritiesConverter
            (new GrantedAuthoritiesExtractor());
    return jwtAuthenticationConveter;
}

which is responsible for converting a Jwt into an Authentication. As part of its configuration, we can supply a subsidiary converter to go from Jwt to a Collection of granted authorities. That final converter might be something like GrantedAuthoritiesExtractor below:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
static class GrantedAuthoritiesExtractor
        implements Converter<Jwt, Collection<GrantedAuthority>> {

    public Collection<GrantedAuthority> convert(Jwt jwt) {
        Collection<String> authorities = (Collection<String>)
                jwt.getClaims().get("mycustomclaim");

        return authorities.stream()
                .map(SimpleGrantedAuthority::new)
                .collect(Collectors.toList());
    }
}

For more flexibility, the DSL supports entirely replacing the converter with any class that implements Converter<jwt, abstractauthenticationtoken="">:

1
2
3
4
5
static class CustomAuthenticationConverter implements Converter<Jwt, AbstractAuthenticationToken> {
    public AbstractAuthenticationToken convert(Jwt jwt) {
        return new CustomAuthenticationToken(jwt);
    }
}

9 Configuring Validation

Using minimal Spring Boot configuration, indicating the authorization server’s issuer uri, Resource Server will default to verifying the iss claim as well as the exp and nbf timestamp claims. In circumstances where validation needs to be customized, Resource Server ships with two standard validators and also accepts custom OAuth2TokenValidator instances.

Customizing Timestamp Validation

JWT’s typically have a window of validity, with the start of the window indicated in the nbf claim and the end indicated in the exp claim. However, every server can experience clock drift, which can cause tokens to appear expired to one server, but not to another. This can cause some implementation heartburn as the number of collaborating servers increases in a distributed system. Resource Server uses JwtTimestampValidator to verify a token’s validity window, and it can be configured with a clockSkew to alleviate the above problem:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
@Bean
JwtDecoder jwtDecoder() {
     NimbusJwtDecoder jwtDecoder = (NimbusJwtDecoder)
             JwtDecoders.fromIssuerLocation(issuerUri);

     OAuth2TokenValidator<Jwt> withClockSkew = new DelegatingOAuth2TokenValidator<>(
            new JwtTimestampValidator(Duration.ofSeconds(60)),
            new IssuerValidator(issuerUri));

     jwtDecoder.setJwtValidator(withClockSkew);

     return jwtDecoder;
}

By default, Resource Server configures a clock skew of 30 seconds.

Configuring a Custom Validator

Adding a check for the aud claim is simple with the OAuth2TokenValidator API:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
public class AudienceValidator implements OAuth2TokenValidator<Jwt> {
    OAuth2Error error = new OAuth2Error("invalid_token", "The required audience is missing", null);

    public OAuth2TokenValidatorResult validate(Jwt jwt) {
        if (jwt.getAudience().contains("messaging")) {
            return OAuth2TokenValidatorResult.success();
        } else {
            return OAuth2TokenValidatorResult.failure(error);
        }
    }
}

Then, to add into a resource server, it’s a matter of specifying the JwtDecoder instance:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
@Bean
JwtDecoder jwtDecoder() {
    NimbusJwtDecoder jwtDecoder = (NimbusJwtDecoder)
        JwtDecoders.fromIssuerLocation(issuerUri);

    OAuth2TokenValidator<Jwt> audienceValidator = new AudienceValidator();
    OAuth2TokenValidator<Jwt> withIssuer = JwtValidators.createDefaultWithIssuer(issuerUri);
    OAuth2TokenValidator<Jwt> withAudience = new DelegatingOAuth2TokenValidator<>(withIssuer, audienceValidator);

    jwtDecoder.setJwtValidator(withAudience);

    return jwtDecoder;
}

10 Configuring Claim Set Mapping

Spring Security uses the Nimbus library for parsing JWTs and validating their signatures. Consequently, Spring Security is subject to Nimbus’s interpretation of each field value and how to coerce each into a Java type. For example, because Nimbus remains Java 7 compatible, it doesn’t use Instant to represent timestamp fields. And it’s entirely possible to use a different library or for JWT processing, which may make its own coercion decisions that need adjustment. Or, quite simply, a resource server may want to add or remove claims from a JWT for domain-specific reasons. For these purposes, Resource Server supports mapping the JWT claim set with MappedJwtClaimSetConverter.

Customizing the Conversion of a Single Claim

By default, MappedJwtClaimSetConverter will attempt to coerce claims into the following types:

Claim Java Type
aud Collection
exp Instant
iat Instant
iss String
jti String
nbf Instant
sub String

An individual claim’s conversion strategy can be configured using MappedJwtClaimSetConverter.withDefaults:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@Bean
JwtDecoder jwtDecoder() {
    NimbusJwtDecoder jwtDecoder = NimbusJwtDecoder.withJwkSetUri(jwkSetUri).build();

    MappedJwtClaimSetConverter converter = MappedJwtClaimSetConverter
            .withDefaults(Collections.singletonMap("sub", this::lookupUserIdBySub));
    jwtDecoder.setClaimSetConverter(converter);

    return jwtDecoder;
}

This will keep all the defaults, except it will override the default claim converter for sub.

Adding a Claim

MappedJwtClaimSetConverter can also be used to add a custom claim, for example, to adapt to an existing system:

1
MappedJwtClaimSetConverter.withDefaults(Collections.singletonMap("custom", custom -> "value"));

Removing a Claim

And removing a claim is also simple, using the same API:

1
MappedJwtClaimSetConverter.withDefaults(Collections.singletonMap("legacyclaim", legacy -> null));

Renaming a Claim

In more sophisticated scenarios, like consulting multiple claims at once or renaming a claim, Resource Server accepts any class that implements Converter<map<string, object="">, Map<string,object>>:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
public class UsernameSubClaimAdapter implements Converter<Map<String, Object>, Map<String, Object>> {
    private final MappedJwtClaimSetConverter delegate =
            MappedJwtClaimSetConverter.withDefaults(Collections.emptyMap());

    public Map<String, Object> convert(Map<String, Object> claims) {
        Map<String, Object> convertedClaims = this.delegate.convert(claims);

        String username = (String) convertedClaims.get("user_name");
        convertedClaims.put("sub", username);

        return convertedClaims;
    }
}

And then, the instance can be supplied like normal:

1
2
3
4
5
6
@Bean
JwtDecoder jwtDecoder() {
    NimbusJwtDecoder jwtDecoder = NimbusJwtDecoder.withJwkSetUri(jwkSetUri).build();
    jwtDecoder.setClaimSetConverter(new UsernameSubClaimAdapter());
    return jwtDecoder;
}

11 Configuring Timeouts

By default, Resource Server uses connection and socket timeouts of 30 seconds each for coordinating with the authorization server. This may be too short in some scenarios. Further, it doesn’t take into account more sophisticated patterns like back-off and discovery. To adjust the way in which Resource Server connects to the authorization server, NimbusJwtDecoder accepts an instance of RestOperations:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@Bean
public JwtDecoder jwtDecoder(RestTemplateBuilder builder) {
    RestOperations rest = builder
            .setConnectionTimeout(60000)
            .setReadTimeout(60000)
            .build();

    NimbusJwtDecoder jwtDecoder = NimbusJwtDecoder.withJwkSetUri(jwkSetUri).restOperations(rest).build();
    return jwtDecoder;
}

12 Minimal Configuration for Introspection

Typically, an opaque token can be verified via an OAuth 2.0 Introspection Endpoint, hosted by the authorization server. This can be handy when revocation is a requirement. When using Spring Boot, configuring an application as a resource server that uses introspection consists of two basic steps. First, include the needed dependencies and second, indicate the introspection endpoint details.

Specifying the Authorization Server

To specify where the introspection endpoint is, simply do:

1
2
3
4
5
6
7
security:
 oauth2:
 resourceserver:
 opaque-token:
 introspection-uri: https://idp.example.com/introspect
 client-id: client
 client-secret: secret

Where https://idp.example.com/introspect is the introspection endpoint hosted by your authorization server and client-id and client-secret are the credentials needed to hit that endpoint. Resource Server will use these properties to further self-configure and subsequently validate incoming JWTs.

When using introspection, the authorization server’s word is the law. If the authorization server responses that the token is valid, then it is.

And that’s it!

Startup Expectations

When this property and these dependencies are used, Resource Server will automatically configure itself to validate Opaque Bearer Tokens. This startup process is quite a bit simpler than for JWTs since no endpoints need to be discovered and no additional validation rules get added.

Runtime Expectations

Once the application is started up, Resource Server will attempt to process any request containing an Authorization: Bearer header:

GET / HTTP/1.1
Authorization: Bearer some-token-value # Resource Server will process this

So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification. Given an Opaque Token, Resource Server will

  1. Query the provided introspection endpoint using the provided credentials and the token
  2. Inspect the response for an { 'active' : true } attribute
  3. Map each scope to an authority with the prefix SCOPE_

The resulting Authentication#getPrincipal, by default, is a Spring Security OAuth2AuthenticatedPrincipal object, and Authentication#getName maps to the token’s sub property, if one is present. From here, you may want to jump to:

13 Looking Up Attributes Post-Authentication

Once a token is authenticated, an instance of BearerTokenAuthentication is set in the SecurityContext. This means that it’s available in @Controller methods when using @EnableWebMvc in your configuration:

1
2
3
4
@GetMapping("/foo")
public String foo(BearerTokenAuthentication authentication) {
    return authentication.getTokenAttributes().get("sub") + " is the subject";
}

Since BearerTokenAuthentication holds an OAuth2AuthenticatedPrincipal, that also means that it’s available to controller methods, too:

1
2
3
4
@GetMapping("/foo")
public String foo(@AuthenticationPrincipal OAuth2AuthenticatedPrincipal principal) {
    return principal.getAttribute("sub") + " is the subject";
}

Looking Up Attributes Via SpEL

Of course, this also means that attributes can be accessed via SpEL. For example, if using @EnableGlobalMethodSecurity so that you can use @PreAuthorize annotations, you can do:

1
2
3
4
@PreAuthorize("principal?.attributes['sub'] == 'foo'")
public String forFoosEyesOnly() {
    return "foo";
}

14 Overriding or Replacing Boot Auto Configuration

There are two @Bean s that Spring Boot generates on Resource Server’s behalf. The first is a WebSecurityConfigurerAdapter that configures the app as a resource server. When use Opaque Token, this WebSecurityConfigurerAdapter looks like:

1
2
3
4
5
6
7
protected void configure(HttpSecurity http) {
    http
        .authorizeRequests()
            .anyRequest().authenticated()
            .and()
        .oauth2ResourceServer(OAuth2ResourceServerConfigurer::opaqueToken)
}

If the application doesn’t expose a WebSecurityConfigurerAdapter bean, then Spring Boot will expose the above default one. Replacing this is as simple as exposing the bean within the application:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
@EnableWebSecurity
public class MyCustomSecurityConfiguration extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests()
                .mvcMatchers("/messages/**").hasAuthority("SCOPE_message:read")
                .anyRequest().authenticated()
                .and()
            .oauth2ResourceServer()
                .opaqueToken()
                    .introspector(myIntrospector());
    }
}

The above requires the scope of message:read for any URL that starts with /messages/. Methods on the oauth2ResourceServer DSL will also override or replace auto configuration. For example, the second @Bean Spring Boot creates is an OpaqueTokenIntrospector, which decodes String tokens into validated instances of OAuth2AuthenticatedPrincipal:

1
2
3
4
@Bean
public OpaqueTokenIntrospector introspector() {
    return new NimbusOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret);
}

If the application doesn’t expose a OpaqueTokenIntrospector bean, then Spring Boot will expose the above default one. And its configuration can be overridden using introspectionUri() and introspectionClientCredentials() or replaced using introspector().

Using introspectionUri()

An authorization server’s Introspection Uri can be configured as a configuration property or it can be supplied in the DSL:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
@EnableWebSecurity
public class DirectlyConfiguredIntrospectionUri extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests()
                .anyRequest().authenticated()
                .and()
            .oauth2ResourceServer()
                .opaqueToken()
                    .introspectionUri("https://idp.example.com/introspect")
                    .introspectionClientCredentials("client", "secret");
    }
}

Using introspectionUri() takes precedence over any configuration property.

Using introspector()

More powerful than introspectionUri() is introspector(), which will completely replace any Boot auto configuration of OpaqueTokenIntrospector:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@EnableWebSecurity
public class DirectlyConfiguredIntrospector extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests()
                .anyRequest().authenticated()
                .and()
            .oauth2ResourceServer()
                .opaqueToken()
                    .introspector(myCustomIntrospector());
    }
}

This is handy when deeper configuration, like authority mapping, JWT revocation, or request timeouts, is necessary.

Exposing a OpaqueTokenIntrospector @Bean

Or, exposing a OpaqueTokenIntrospector @Bean has the same effect as introspector():

1
2
3
4
@Bean
public OpaqueTokenIntrospector introspector() {
    return new NimbusOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret);
}

15 Configuring Authorization

An OAuth 2.0 Introspection endpoint will typically return a scope attribute, indicating the scopes (or authorities) it’s been granted, for example: { …​, "scope" : "messages contacts"} When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_". This means that to protect an endpoint or method with a scope derived from an Opaque Token, the corresponding expressions should include this prefix:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@EnableWebSecurity
public class MappedAuthorities extends WebSecurityConfigurerAdapter {
    protected void configure(HttpSecurity http) {
        http
            .authorizeRequests(authorizeRequests -> authorizeRequests
                .mvcMatchers("/contacts/**").hasAuthority("SCOPE_contacts")
                .mvcMatchers("/messages/**").hasAuthority("SCOPE_messages")
                .anyRequest().authenticated()
            )
            .oauth2ResourceServer(OAuth2ResourceServerConfigurer::opaqueToken);
    }
}

Or similarly with method security:

1
2
@PreAuthorize("hasAuthority('SCOPE_messages')")
public List<Message> getMessages(...) {}

Extracting Authorities Manually

By default, Opaque Token support will extract the scope claim from an introspection response and parse it into individual GrantedAuthority instances. For example, if the introspection response were:

1
2
3
4
{
    "active" : true,
    "scope" : "message:read message:write"
}

Then Resource Server would generate an Authentication with two authorities, one for message:read and the other for message:write. This can, of course, be customized using a custom OpaqueTokenIntrospector that takes a look at the attribute set and converts in its own way:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
public class CustomAuthoritiesOpaqueTokenIntrospector implements OpaqueTokenIntrospector {
    private OpaqueTokenIntrospector delegate =
            new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");

    public OAuth2AuthenticatedPrincipal introspect(String token) {
        OAuth2AuthenticatedPrincipal principal = this.delegate.introspect(token);
        return new DefaultOAuth2AuthenticatedPrincipal(
                principal.getName(), principal.getAttributes(), extractAuthorities(principal));
    }

    private Collection<GrantedAuthority> extractAuthorities(OAuth2AuthenticatedPrincipal principal) {
        List<String> scopes = principal.getAttribute(OAuth2IntrospectionClaimNames.SCOPE);
        return scopes.stream()
                .map(SimpleGrantedAuthority::new)
                .collect(Collectors.toList());
    }
}

Thereafter, this custom introspector can be configured simply by exposing it as a @Bean:

1
2
3
4
@Bean
public OpaqueTokenIntrospector introspector() {
    return new CustomAuthoritiesOpaqueTokenIntrospector();
}

16 Configuring Timeouts

By default, Resource Server uses connection and socket timeouts of 30 seconds each for coordinating with the authorization server. This may be too short in some scenarios. Further, it doesn’t take into account more sophisticated patterns like back-off and discovery. To adjust the way in which Resource Server connects to the authorization server, NimbusOpaqueTokenIntrospector accepts an instance of RestOperations:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@Bean
public OpaqueTokenIntrospector introspector(RestTemplateBuilder builder) {
    RestOperations rest = builder
            .basicAuthentication(clientId, clientSecret)
            .setConnectionTimeout(60000)
            .setReadTimeout(60000)
            .build();

    return new NimbusOpaqueTokenIntrospector(introspectionUri, rest);
}

17 Using Introspection with JWTs

A common question is whether or not introspection is compatible with JWTs. Spring Security’s Opaque Token support has been designed to not care about the format of the token — it will gladly pass any token to the introspection endpoint provided. So, let’s say that you’ve got a requirement that requires you to check with the authorization server on each request, in case the JWT has been revoked. Even though you are using the JWT format for the token, your validation method is introspection, meaning you’d want to do:

1
2
3
4
5
6
7
8
spring:
 security:
 oauth2:
 resourceserver:
 opaque-token:
 introspection-uri: https://idp.example.org/introspection
 client-id: client
 client-secret: secret

In this case, the resulting Authentication would be BearerTokenAuthentication. Any attributes in the corresponding OAuth2AuthenticatedPrincipal would be whatever was returned by the introspection endpoint. But, let’s say that, oddly enough, the introspection endpoint only returns whether or not the token is active. Now what? In this case, you can create a custom OpaqueTokenIntrospector that still hits the endpoint, but then updates the returned principal to have the JWTs claims as the attributes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class JwtOpaqueTokenIntrospector implements OpaqueTokenIntrospector {
    private OpaqueTokenIntrospector delegate =
            new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
    private JwtDecoder jwtDecoder = new NimbusJwtDecoder(new ParseOnlyJWTProcessor());

    public OAuth2AuthenticatedPrincipal introspect(String token) {
        OAuth2AuthenticatedPrincipal principal = this.delegate.introspect(token);
        try {
            Jwt jwt = this.jwtDecoder.decode(token);
            return new DefaultOAuth2AuthenticatedPrincipal(jwt.getClaims(), NO_AUTHORITIES);
        } catch (JwtException e) {
            throw new OAuth2IntrospectionException(e);
        }
    }

    private static class ParseOnlyJWTProcessor extends DefaultJWTProcessor<SecurityContext> {
        JWTClaimsSet process(SignedJWT jwt, SecurityContext context)
                throws JOSEException {
            return jwt.getJWTClaimSet();
        }
    }
}

Thereafter, this custom introspector can be configured simply by exposing it as a @Bean:

1
2
3
4
@Bean
public OpaqueTokenIntrospector introspector() {
    return new JwtOpaqueTokenIntropsector();
}

18 Calling a /userinfo Endpoint

Generally speaking, a Resource Server doesn’t care about the underlying user, but instead about the authorities that have been granted. That said, at times it can be valuable to tie the authorization statement back to a user. If an application is also using spring-security-oauth2-client, having set up the appropriate ClientRegistrationRepository, then this is quite simple with a custom OpaqueTokenIntrospector. This implementation below does three things:

  • Delegates to the introspection endpoint, to affirm the token’s validity
  • Looks up the appropriate client registration associated with the /userinfo endpoint
  • Invokes and returns the response from the /userinfo endpoint
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
public class UserInfoOpaqueTokenIntrospector implements OpaqueTokenIntrospector {
    private final OpaqueTokenIntrospector delegate =
            new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
    private final OAuth2UserService oauth2UserService = new DefaultOAuth2UserService();

    private final ClientRegistrationRepository repository;

    // ... constructor

    @Override
    public OAuth2AuthenticatedPrincipal introspect(String token) {
        OAuth2AuthenticatedPrincipal authorized = this.delegate.introspect(token);
        Instant issuedAt = authorized.getAttribute(ISSUED_AT);
        Instant expiresAt = authorized.getAttribute(EXPIRES_AT);
        ClientRegistration clientRegistration = this.repository.findByRegistrationId("registration-id");
        OAuth2AccessToken token = new OAuth2AccessToken(BEARER, token, issuedAt, expiresAt);
        OAuth2UserRequest oauth2UserRequest = new OAuth2UserRequest(clientRegistration, token);
        return this.oauth2UserService.loadUser(oauth2UserRequest);
    }
}

If you aren’t using spring-security-oauth2-client, it’s still quite simple. You will simply need to invoke the /userinfo with your own instance of WebClient:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
public class UserInfoOpaqueTokenIntrospector implements OpaqueTokenIntrospector {
    private final OpaqueTokenIntrospector delegate =
            new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
    private final WebClient rest = WebClient.create();

    @Override
    public OAuth2AuthenticatedPrincipal introspect(String token) {
        OAuth2AuthenticatedPrincipal authorized = this.delegate.introspect(token);
        return makeUserInfoRequest(authorized);
    }
}

Either way, having created your OpaqueTokenIntrospector, you should publish it as a @Bean to override the defaults:

1
2
3
4
@Bean
OpaqueTokenIntrospector introspector() {
    return new UserInfoOpaqueTokenIntrospector(...);
}

19 Supporting both JWT and Opaque Token

In some cases, you may have a need to access both kinds of tokens. For example, you may support more than one tenant where one tenant issues JWTs and the other issues opaque tokens. If this decision must be made at request-time, then you can use an AuthenticationManagerResolver to achieve it, like so:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
@Bean
AuthenticationManagerResolver<HttpServletRequest> tokenAuthenticationManagerResolver() {
    BearerTokenResolver bearerToken = new DefaultBearerTokenResolver();
    JwtAuthenticationProvider jwt = jwt();
    OpaqueTokenAuthenticationProvider opaqueToken = opaqueToken();

    return request -> {
        String token = bearerToken.resolve(request);
        if (isAJwt(token)) {
            return jwt::authenticate;
        } else {
            return opaqueToken::authenticate;
        }
    }
}

And then specify this AuthenticationManagerResolver in the DSL:

1
2
3
4
5
6
http
    .authorizeRequests()
        .anyRequest().authenticated()
        .and()
    .oauth2ResourceServer()
        .authenticationManagerResolver(this.tokenAuthenticationManagerResolver);

20 Multi-tenancy

A resource server is considered multi-tenant when there are multiple strategies for verifying a bearer token, keyed by some tenant identifier. For example, your resource server may accept bearer tokens from two different authorization servers. Or, your authorization server may represent a multiplicity of issuers. In each case, there are two things that need to be done and trade-offs associated with how you choose to do them:

  1. Resolve the tenant
  2. Propagate the tenant

Resolving the Tenant By Request Material

Resolving the tenant by request material can be done my implementing an AuthenticationManagerResolver, which determines the AuthenticationManager at runtime, like so:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@Component
public class TenantAuthenticationManagerResolver
        implements AuthenticationManagerResolver<HttpServletRequest> {
    private final BearerTokenResolver resolver = new DefaultBearerTokenResolver();
    private final TenantRepository tenants; // 1

    private final Map<String, AuthenticationManager> authenticationManagers = new ConcurrentHashMap<>(); // 2

    public TenantAuthenticationManagerResolver(TenantRepository tenants) {
        this.tenants = tenants;
    }

    @Override
    public AuthenticationManager resolve(HttpServletRequest request) {
        return this.authenticationManagers.computeIfAbsent(toTenant(request), this::fromTenant);
    }

    private String toTenant(HttpServletRequest request) {
        String[] pathParts = request.getRequestURI().split("/");
        return pathParts.length > 0 ? pathParts[1] : null;
    }

    private AuthenticationManager fromTenant(String tenant) {
        return Optional.ofNullable(this.tenants.get(tenant)) // 3
                .map(JwtDecoders::fromIssuerLocation) // 4
                .map(JwtAuthenticationProvider::new)
                .orElseThrow(() -> new IllegalArgumentException("unknown tenant"))::authenticate;
    }
}
  1. A hypothetical source for tenant information
  2. A cache for AuthenticationManagers, keyed by tenant identifier
  3. Looking up the tenant is more secure than simply computing the issuer location on the fly - the lookup acts as a tenant whitelist
  4. Create a JwtDecoder via the discovery endpoint - the lazy lookup here means that you don’t need to configure all tenants at startup

And then specify this AuthenticationManagerResolver in the DSL:

1
2
3
4
5
6
http
    .authorizeRequests()
        .anyRequest().authenticated()
        .and()
    .oauth2ResourceServer()
        .authenticationManagerResolver(this.tenantAuthenticationManagerResolver);

Resolving the Tenant By Claim

Resolving the tenant by claim is similar to doing so by request material. The only real difference is the toTenant method implementation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@Component
public class TenantAuthenticationManagerResolver implements AuthenticationManagerResolver<HttpServletRequest> {
    private final BearerTokenResolver resolver = new DefaultBearerTokenResolver();
    private final TenantRepository tenants; // 1

    private final Map<String, AuthenticationManager> authenticationManagers = new ConcurrentHashMap<>(); // 2

    public TenantAuthenticationManagerResolver(TenantRepository tenants) {
        this.tenants = tenants;
    }

    @Override
    public AuthenticationManager resolve(HttpServletRequest request) {
        return this.authenticationManagers.computeIfAbsent(toTenant(request), this::fromTenant); // 3
    }

    private String toTenant(HttpServletRequest request) {
        try {
            String token = this.resolver.resolve(request);
            return (String) JWTParser.parse(token).getJWTClaimsSet().getIssuer();
        } catch (Exception e) {
            throw new IllegalArgumentException(e);
        }
    }

    private AuthenticationManager fromTenant(String tenant) {
        return Optional.ofNullable(this.tenants.get(tenant)) // 4
                .map(JwtDecoders::fromIssuerLocation) // 5
                .map(JwtAuthenticationProvider::new)
                .orElseThrow(() -> new IllegalArgumentException("unknown tenant"))::authenticate;
    }
}
1 A hypothetical source for tenant information
1 A cache for AuthenticationManagers, keyed by tenant identifier
1 1 Looking up the tenant is more secure than simply computing the issuer location on the fly - the lookup acts as a tenant whitelist
1 Create a JwtDecoder via the discovery endpoint - the lazy lookup here means that you don’t need to configure all tenants at startup
1
2
3
4
5
6
http
    .authorizeRequests()
        .anyRequest().authenticated()
        .and()
    .oauth2ResourceServer()
        .authenticationManagerResolver(this.tenantAuthenticationManagerResolver);

Parsing the Claim Only Once

You may have observed that this strategy, while simple, comes with the trade-off that the JWT is parsed once by the AuthenticationManagerResolver and then again by the JwtDecoder. This extra parsing can be alleviated by configuring the JwtDecoder directly with a JWTClaimSetAwareJWSKeySelector from Nimbus:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
@Component
public class TenantJWSKeySelector
    implements JWTClaimSetAwareJWSKeySelector<SecurityContext> {

    private final TenantRepository tenants; 1
    private final Map<String, JWSKeySelector<SecurityContext>> selectors = new ConcurrentHashMap<>(); 2

    public TenantJWSKeySelector(TenantRepository tenants) {
        this.tenants = tenants;
    }

    @Override
    public List<? extends Key> selectKeys(JWSHeader jwsHeader, JWTClaimsSet jwtClaimsSet, SecurityContext securityContext)
            throws KeySourceException {
        return this.selectors.computeIfAbsent(toTenant(jwtClaimsSet), this::fromTenant)
                .selectJWSKeys(jwsHeader, securityContext);
    }

    private String toTenant(JWTClaimsSet claimSet) {
        return (String) claimSet.getClaim("iss");
    }

    private JWSKeySelector<SecurityContext> fromTenant(String tenant) {
        return Optional.ofNullable(this.tenantRepository.findById(tenant)) 3
                .map(t -> t.getAttrbute("jwks_uri"))
                .map(this::fromUri)
                .orElseThrow(() -> new IllegalArgumentException("unknown tenant"));
    }

    private JWSKeySelector<SecurityContext> fromUri(String uri) {
        try {
            return JWSAlgorithmFamilyJWSKeySelector.fromJWKSetURL(new URL(uri)); 4
        } catch (Exception e) {
            throw new IllegalArgumentException(e);
        }
    }
}
1 A hypothetical source for tenant information
1 A cache for JWKKeySelectors, keyed by tenant identifier
1 Looking up the tenant is more secure than simply calculating the JWK Set endpoint on the fly - the lookup acts as a tenant whitelist
1 Create a JWSKeySelector via the types of keys that come back from the JWK Set endpoint - the lazy lookup here means that you don’t need to configure all tenants at startupp

The above key selector is a composition of many key selectors. It chooses which key selector to use based on the iss claim in the JWT.

To use this approach, make sure that the authorization server is configured to include the claim set as part of the token’s signature. Without this, you have no guarantee that the issuer hasn’t been altered by a bad actor.

Next, we can construct a JWTProcessor:

1
2
3
4
5
6
7
@Bean
JWTProcessor jwtProcessor(JWTClaimSetJWSKeySelector keySelector) {
    ConfigurableJWTProcessor<SecurityContext> jwtProcessor =
            new DefaultJWTProcessor();
    jwtProcessor.setJWTClaimSetJWSKeySelector(keySelector);
    return jwtProcessor;
}

As you are already seeing, the trade-off for moving tenant-awareness down to this level is more configuration. We have just a bit more. Next, we still want to make sure you are validating the issuer. But, since the issuer may be different per JWT, then you’ll need a tenant-aware validator, too:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@Component
public class TenantJwtIssuerValidator implements OAuth2TokenValidator<Jwt> {
    private final TenantRepository tenants;
    private final Map<String, JwtIssuerValidator> validators = new ConcurrentHashMap<>();

    public TenantJwtIssuerValidator(TenantRepository tenants) {
        this.tenants = tenants;
    }

    @Override
    public OAuth2TokenValidatorResult validate(Jwt token) {
        return this.validators.computeIfAbsent(toTenant(token), this::fromTenant)
                .validate(token);
    }

    private String toTenant(Jwt jwt) {
        return jwt.getIssuer();
    }

    private JwtIssuerValidator fromTenant(String tenant) {
        return Optional.ofNullable(this.tenants.findById(tenant))
                .map(t -> t.getAttribute("issuer"))
                .map(JwtIssuerValidator::new)
                .orElseThrow(() -> new IllegalArgumentException("unknown tenant"));
    }
}

Now that we have a tenant-aware processor and a tenant-aware validator, we can proceed with creating our JwtDecoder:

1
2
3
4
5
6
7
8
@Bean
JwtDecoder jwtDecoder(JWTProcessor jwtProcessor, OAuth2TokenValidator<Jwt> jwtValidator) {
    NimbusJwtDecoder decoder = new NimbusJwtDecoder(processor);
    OAuth2TokenValidator<Jwt> validator = new DelegatingOAuth2TokenValidator<>
            (JwtValidators.createDefault(), this.jwtValidator);
    decoder.setJwtValidator(validator);
    return decoder;
}

We’ve finished talking about resolving the tenant. If you’ve chosen to resolve the tenant by request material, then you’ll need to make sure you address your downstream resource servers in the same way. For example, if you are resolving it by subdomain, you’ll need to address the downstream resource server using the same subdomain. However, if you resolve it by a claim in the bearer token, read on to learn about Spring Security’s support for bearer token propagation.

21 Bearer Token Resolution

By default, Resource Server looks for a bearer token in the Authorization header. This, however, can be customized in a couple of ways.

Reading the Bearer Token from a Custom Header

For example, you may have a need to read the bearer token from a custom header. To achieve this, you can wire a HeaderBearerTokenResolver instance into the DSL, as you can see in the following example:

1
2
3
http
    .oauth2ResourceServer()
        .bearerTokenResolver(new HeaderBearerTokenResolver("x-goog-iap-jwt-assertion"));

Reading the Bearer Token from a Form Parameter

Or, you may wish to read the token from a form parameter, which you can do by configuring the DefaultBearerTokenResolver, as you can see below:

1
2
3
4
5
DefaultBearerTokenResolver resolver = new DefaultBearerTokenResolver();
resolver.setAllowFormEncodedBodyParameter(true);
http
    .oauth2ResourceServer()
        .bearerTokenResolver(resolver);

22 Bearer Token Propagation

Now that you’re in possession of a bearer token, it might be handy to pass that to downstream services. This is quite simple with ServletBearerExchangeFilterFunction, which you can see in the following example:

1
2
3
4
5
6
@Bean
public WebClient rest() {
    return WebClient.builder()
            .filter(new ServletBearerExchangeFilterFunction())
            .build();
}

When the above WebClient is used to perform requests, Spring Security will look up the current Authentication and extract any AbstractOAuth2Token credential. Then, it will propagate that token in the Authorization header. For example:

1
2
3
4
5
this.rest.get()
        .uri("https://other-service.example.com/endpoint")
        .retrieve()
        .bodyToMono(String.class)
        .block()

Will invoke the https://other-service.example.com/endpoint, adding the bearer token Authorization header for you. In places where you need to override this behavior, it’s a simple matter of supplying the header yourself, like so:

1
2
3
4
5
6
this.rest.get()
        .uri("https://other-service.example.com/endpoint")
        .headers(headers -> headers.setBearerAuth(overridingToken))
        .retrieve()
        .bodyToMono(String.class)
        .block()

In this case, the filter will fall back and simply forward the request onto the rest of the web filter chain.

Unlike the OAuth 2.0 Client filter function, this filter function makes no attempt to renew the token, should it be expired. To obtain this level of support, please use the OAuth 2.0 Client filter.

RestTemplate support

There is no dedicated support for RestTemplate at the moment, but you can achieve propagation quite simply with your own interceptor:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
@Bean
RestTemplate rest() {
    RestTemplate rest = new RestTemplate();
    rest.getInterceptors().add((request, body, execution) -> {
        Authentication authentication = SecurityContextHolder.getContext().getAuthentication();
        if (authentication == null) {
            return execution.execute(request, body);
        }

        if (!(authentication.getCredentials() instanceof AbstractOAuth2Token)) {
            return execution.execute(request, body);
        }

        AbstractOAuth2Token token = (AbstractOAuth2Token) authentication.getCredentials();
        request.getHeaders().setBearerAuth(token.getTokenValue());
        return execution.execute(request, body);
    });
    return rest;
}
updatedupdated2020-10-122020-10-12